Category: Smart Glass

Page 1 of 9 1 2 3 4 9

Arm Mali-D77 Interview: Game-changing display processor technology for VR

Posted by Charbax – June 30, 2019

At SID Display Week 2019, Arm Mali -D77 DPU display processor is launched, that significantly improves the VR user experience with dedicated hardware functions for VR HMDs, namely: Lens Distortion Correction (LDC), Chromatic Aberration Correction (CAC) and Asynchronous Timewarp (ATW). These are on top of the already feature rich Mali-D71 DPU for premium mobile devices, Mali-D77 changes the way we think about VR workload distribution across the SoC. It enables a significant step-up in the display resolutions and frame rates that can be achieved within the power constraints of mobile VR HMD you can read more about the Mali-D77 here: https://community.arm.com/developer/tools-software/graphics/b/blog/posts/introducing-the-arm-mali-d77-display-processor

JBD microLED 2 million nits, 10,000 DPI (5000×4000), brightest, highest pixel density in the world

Posted by Charbax – June 22, 2019

JBD https://jb-display.com shows their active matrix inorganic microLED display chips and panels with wavelength ranging from UV to visible to IR. The pixel pitch ranges from 400 dpi to 10,000 dpi with a varity of resolutions, high brightness, high EQE, high reliability, these panels are ideal for AR, VR, HUD, projector, weapon sights, 3D printing, microscope and more. JBD's microLED uses wafer level technology, no phosphor, no pick and place, no mass transfer, no quantum dots, everything is made by Silicon and compound semiconductor on a wafer. At SID Display Week 2019, JBD shows 2 million nits brightness Micro LED, 600 DPI bi-color Micro LED display implementing JBD’s proprietary transferring technology to move red and green LEDs to silicon CMOS backplane. Also, JBD shows a mono-color microLED module with the same silicon CMOS backplane solution which achieves a pitch size of only 2.5µm and 10,000 DPI achieving a brightness of a million nits (on the 10K DPI display, 2 million nits is achieved on the 5K DPI display) at a resolution of 5000x4000. JBD is capable to minimize the pitch size to below 2.5µm, which surpasses DLP. Their next step is to increase brightness and to achieve full color.

Plessey microLED GaN-on-Silicon Monolithic 0.7″ FHD Bonded Display

Posted by Charbax – June 21, 2019

Plessey at Display Week 2019 showcases their proprietary monolithic microLED technology to enable a new generation of augmented reality devices simplifying optical systems that are brighter, smaller, lighter and higher performing than incumbent light sources currently used in AR/MR headsets, smart glasses, pico-projectors and HUD. Plessey’s GaN-on-Silicon is their route for monolithic addressable micro LED arrays/pixels for hi-res and hi-lum displays, high brightness LEDs, microLED displays, power devices, UV LEDs, photonic integration, advanced sensors, Plessey is creating compelling cutting edge display technology solutions, addressing the challenges and limitations faced in the field of photonics, arrays with emitters as small as 1 micron, driven at low current density for greater efficiency and longevity. External Quantum Efficiency at least three times higher than best in class benchmarks with more improvements in the pipeline. Arrays that provide at least 100,000 nits at 1 watt, that’s TV equivalent brightness at only 5mW, Coloured pixels fabricated in monolithic form. IP protected custom CMOS back plane provides rapid developments for custom arrays. GaN-on-Silicon MicroLEDs outperform incumbent technologies such as OLED with an outstanding thermal performance, Focussed light emitting surface, monolithic die/array Lm/W maintenance, excellent uniformity, integrated electronic and optical components, showcasing a 0.7-inch Micro LED display for AR, made by 8µm blue LED chips on JDC’s CMOS backplane to achieve a resolution of 1920*1080. Plessey upgraded its facilities and equipment recently, equipped with new semiconductor-level clean rooms and automated facilities, Plessey produces the world first wafer to wafer bonding Micro LED display with Micro LED epitaxy wafer and silicon CMOS backplane. As AR projection applications are targeted by several leading companies, Plessey has cooperated with technology partners including AIXTRON, JSC, Nanoco, VUZIX and others to enhance production facilities, demonstrating its capability of commercialization of Micro LED AR.

BOE 12.3″ Rollable Phone, 7.7″ Foldable Phone, 65″ BD LCD, Printed OLED, 8K VR, Automotive, mini-LED

Posted by Charbax – June 15, 2019

At SID Display Week 2019, BOE shows their latest 12.3" Rollable Phone, 7.7" Foldable Phone, many other flexible displays, UHD displays, micro-displays, other world-leading technologies and innovative applications such as their Smart driving experience brought by flexible display for the Internet of Vehicles (IoV) comprising a smart driver cabin and a spliced display screen of three units in three rows with only 0.99 mm bezels allowing visitors to experience a brand-new in-car display solution of the future. In addition to flexible display applications, BOE also displays the world-leading UHD display solution called the BD CELL UHD display which features an ultra-high static contrast ratio of up to 1,000,000:1, a bit depth of 12 bit, and a black field brightness of less than 0.003 nits, BOE also presents a host of 8K products, including 75" 8K 120Hz display, a 3.5" 8K VR display, and 0.39" 8K spliced VR display. Under the "8425 Strategy" (promote 8K, popularize 4K, replace 2K and make good use of 5G), BOE is now speeding up the application of 8K in many fields. Other leading-edge technologies and solutions that BOE shows at this show include the first ever HDR notebook featuring mini-LED, the 15.6" oxide display with an ultra-high refresh rate of 240Hz, the 55" inkjet-printed 4K OLED display, the 0.39" micro-OLED AR display that enjoys the world's largest pixel density of 5,644 PPI.

In the smart Automotive cabin, the information required for smart travel becomes part of the actual scene with the help of AR technology, the head-up display (HUD) can project useful information such as speed per hour and navigation onto the front windshield for the driver's reference. In addition, BOE replaces the conventional in-car LCD with flexible display. The 12.3" three-unit flexible display is backed by the OLED pixel compensation circuit technology developed by BOE, which can effectively improve the brightness uniformity of mid-sized OLED displays and provide better audiovisual experience for car users, BOE applies flexible AMOLED displays to transparent A-pillars, rearview mirrors to solve the problem of driver's blind spots in automotive design. The flexible display can perfectly match the shape of the A-pillar and show data with delay shorter than one millisecond. With the help of camera, the images blocked by the A-pillar can be shown on the flexible display, thus eliminating blind spots in the field of view. By applying flexible display, the rearview mirror can also be customized according to the interior shape of the car. BOE's smart cabin is equipped with a 6.39" flexible display as a built-in rearview mirror, which makes it safer to drive the car even on rainy and snowy days, BOE also exhibited some innovative applications of in-car display, such as center console solution that supports gesture-based interaction and V-shaped mini-LED for cars. BOE's high-end in-car display panels have been supplied to automakers in the United States, Germany, the UK, Japan and South Korea.

Kopin Golden-i Smart Glass at CES 2019

Posted by Charbax – February 9, 2019

Golden-i is preparing to revolutionize the world of adjustable/customizable life enhancing smart glasses, at its 8th Generation (I have filmed Golden-i prototype developments since 2011 here and here), the Golden-i team has reached this yet smallest Smart Glass implementation that works with USB Type-C Displayport phones (for now on slightly modified firmwares) to output the full potential of the Smart Phone right into the hands free Smart Glass computing user interface.

Gamma Scientific Near Eye Display measurement system

Posted by Charbax – July 11, 2018

Gamma Scientific shows its Near Eye Display (GS-1290 NED) measurement system captures spectral measurements of Virtual Reality, Mixed Reality, Augmented Reality and Helmet mounted displays as viewed by the human eye. The telescopic optics are compact enough to fit inside a helmet and are designed to point in different directions to emulate the movement of the human eye.

Oculus Research of Facebook Keynote at SID Display Week 2018

Posted by Charbax – June 25, 2018

Douglas Lanman, Director of Computational Imaging at Oculus Research, give his keynote address: “Reactive Displays: Unlocking Next-Generation VR/AR Visuals with Eye Tracking” at SID Display Week 2018, the world's largest exhibition for electronic information display technology.

As personal viewing devices, head-mounted displays offer a unique means to rapidly deliver richer visual experiences than past direct-view displays occupying a shared environment. Viewing optics, display components, and sensing elements may all be tuned for a single user. It is the latter element that helps differentiate from the past, with individualized eye tracking playing an important role in unlocking higher resolutions, wider fields of view, and more comfortable visuals than past displays. This talk will explore the “reactive display” concept and how it may impact VR/AR devices in the coming years.

Douglas Lanman, Ph.D. is the director of computational imaging at Oculus Research, where he leads investigations into advanced display and imaging technologies. His prior research has focused on head-mounted displays, glasses-free 3D displays, light-field cameras, and active illumination for 3D reconstruction and interaction. He received a B.S. in applied physics with honors from Caltech in 2002 and M.S. and Ph.D. degrees in electrical engineering from Brown University in 2006 and 2010, respectively. He was a senior research scientist at NVIDIA Research from 2012 to 2014, a postdoctoral associate at the MIT Media Lab from 2010 to 2012, and an assistant research staff member at MIT Lincoln Laboratory from 2002 to 2005.

ITRI shows microLED full-color microdisplay on PCB board vs. glass

Posted by Charbax – June 22, 2018

Industrial Technology Research Institute (ITRI) demonstrated a full-color microdisplay with microLED on PCB board vs. the widespread practice of placing microLEDs on glass substrate, which is much flatter than the PCB . The significance of this technology pertains initially to indoor and outdoor signage because most signage is on PCB board, and not glass. IRTI projects that the industry will prefer PCB board because it can be produced at higher quantities and lower-costs than glass. They can also tie multiple modules together to create a modular display. Future applications include AR/VR and wearable.

Filmed at the I-Zone demo and prototype area at SID Display Week, the world's largest and best exhibition for electronic information display technology.

microLED, 5000ppi, brightest display in the world (1 million nits) by Jade Bird Display (JBD)

Posted by Charbax – June 22, 2018

Hong Kong Beida Jade Bird Display (JBD) received an honorable mention from I-Zone judges for its active-matrix microLED display with 5,000 pixels per inch and over 1 million nits of brightness. JBD develops next-gen inorganic material-based microLED microdisplays using its unique wafer-scale, monolithic hybrid-integration technology, which allows the excellent light emission of compound semiconductor devices to be paired with IC functionality. JBD’s AMOLED microdisplays provide a solution for applications in augmented reality and other projection formats.

Filmed at the I-Zone demo and prototype area at SID Display Week, the world's largest and best exhibition for electronic information display technology.

ETRI RaonTech Microdisplays at I-Zone SID Display Week 2018

Posted by Charbax – June 22, 2018

ETRI shows a variety of RaonTech’s microdisplay solutions, which can be used for military.

Filmed at the I-Zone demo and prototype area at SID Display Week, the world's largest and best exhibition for electronic information display technology.