Category: Embedded World

Nvidia Tegra X2 in Jetson TX2 Developer Kit, dual Denver2 + quad ARM Cortex-A57, Pascal GPU


Nvidia Tegra X2 features two Nvidia custom Denver 2 cores, four ARM Cortex-A57 cores with Nvidia’s Pascal GPU (made of 256 CUDA cores) made on TSMC’s 16nm FinFET+. Nvidia Tegra X2 (codenamed “Parker”) delivers up to 1.5 teraflops of performance, about 50% more performance than Nvidia Tegra X1. Enabling Artificial Intelligence (AI), for building advanced robots, drones, smart cameras, portable medical devices, enabling the processing of complex deep neural networks on the edge of the IoT world. While X1 could do 4K at 30fps encode, 4K 10bit 60p decode, X2 can encode 4K H265 at 60p and decode 4K 12bit 60p. Memory bandwidth has more than doubled from 25.6GB/s to 58.3GB/s, you can buy the Nvidia Jetson TX2 Developer Kit for $599 at https://store.nvidia.com/store?Action=DisplayPage&Locale=en_US&SiteID=nvidia&id=QuickBuyCartPage

Cypress PSoC 6 dual-core ARM Cortex-M4 and ARM Cortex-M0+

Posted by – March 17, 2017

The Cypress Semiconductor PSoC 6 is a dual-core microcontroller featuring all Cypress’s peripherals and configurability of previous generations, to build low-power designs with a high degree of security, for IoT. Cypress PSoC 6 features ARM Cortex-M4 and ARM Cortex-M0+ cores, in an ultra-low-power 40-nm process technology, with integrated security features required for next-generation IoT. The architecture is intended to fill a gap in IoT offerings between power-hungry and higher-cost application processors and performance-challenged, single-core MCUs. The dual-core architecture lets designers optimize for power and performance simultaneously, alongside its software-defined peripherals. The two cores can achieve 22 µA/MHz and 15 µA/MHz of active power on the ARM Cortex-M4 and Cortex-M0+ cores, respectively. The dual-core architecture enables power-optimized system design where the auxiliary core can be used as an offload engine for power efficiency, allowing the main core to sleep.

The PSoC 6 MCU architecture provides a hardware-based Trusted Execution Environment (TEE) with secure boot capability and integrated secure data storage to protect firmware, applications and secure assets such as cryptographic keys. PSoC 6 implements a set of industry-standard symmetric and asymmetric cryptographic algorithms, including Elliptical-Curve Cryptography (ECC), Advanced Encryption Standard (AES), and Secure Hash Algorithms (SHA 1,2,3) in an integrated hardware coprocessor designed to offload compute-intensive tasks. The architecture supports multiple, simultaneous secure environments without the need for external memories or secure elements, and offers scalable secure memory for multiple, independent user-defined security policies.

Software-defined peripherals can be used to create custom analogue front-ends (AFEs) or digital interfaces for innovative system components such as electronic-ink displays. The architecture offers flexible wireless connectivity options, including fully integrated Bluetooth Low Energy (BLE) 5.0. The PSoC 6 MCU architecture features the latest generation of Cypress’ CapSense capacitive-sensing technology, enabling touch and gesture-based interfaces. The architecture is supported by Cypress’ PSoC Creator Integrated Design Environment (IDE) and the ARM ecosystem.

In this video, Cypress shows PSoC 6 using a wearable demo and the PSoC 6 pioneer kit. You can read more about PSoC 6 here: http://www.cypress.com/event/psoc-6-purpose-built-iots

22€ computer module by Toradex, Swiss, Embedded, Computing


Toradex is a developer of computer modules on Nvidia, Freescale, Marvell and carrier boards, most of the times where Toradex’s customers designs their own custom carrier board.

UDOO Neo on i.MX6SoloX by Seco Labs = Raspberry Pi + Arduino + Wi-Fi + BT 4.0 + Sensors


Udoo launched their Single Board Computer Udoo Neo based on an ARM Cortex-A9 and an ARM Cortex-M4, it already got funded on Kickstarter reaching it’s $15k goal on Kickstarter in 80 minutes.

UDOO Neo merges the world of Arduino and Raspberry Pi with wireless connectivity and 9-axis motion sensors, providing a complete and easy solution to free your imagination, make your objects alive and create new smart devices and appliances from scratch.

On Monday 20 April 2015 SECO USA Inc. launched UDOO Neo on Kickstarter at 11 o’clock in EST time, raising the 15k USD dollar goal in just 80 minutes.

UDOO Neo is a credit-card size (59.3mm x 85mm – 3.35″ x 2.33″), low-cost, low-power consumption, open-source hardware board, able to run Android or Linux and Arduino-compatible. It can be used as a fully-fledged computer, as an Arduino-compatible microcontroller or as an embedded computer to build new devices, smart objects and appliances.

TI LaunchPad Evaluation Kits to get started with TI microcontrollers


Texas Instruments shows their low cost microcontroler developer platform. On the board can be a debugger, the target MCU and the specialized headers that are the same for each of the different TI Launchpad boards, some have Ethernet, other have WiFi. Using ARM Cortex-M4 and other cores, Texas Instruments also is demonstrating a complete IoT system with IBM, one of our Cloud Partnersfeaturing a variety of low power SensorTags each providing multiple sensors and using different radio technologies such as Bluetooth Low Energy, 6Lowpan, Zigbee all using the new SimpleLink ultra-low power multi-standard CC2650 wireless microcontroller as well as Wi-fi using the CC3200. These are connected via BeagleBone based gateways which communicate with the cloud server for processing using MQTT.

Altera Arria 10 FPGA with dual-core ARM Cortex-A9 on 20nm

Posted by – May 21, 2015

Altera is shipping their second generation ARM Cortex-A9 based FPGA in the Altera Arria 10 FPGA, built on 20nm, running at 1.5 GHz, the ARM processor provides a 50% increase in performance over the previous generation (Altera Arria 5) with also a 30% power reduction. Altera Arria 10 SoCs support secure boot with authentication based on Elliptical Curve Digital Signature Authentication (EC DSA), with a layered public key infrastructure for root of trust support, Advanced Encryption Standard (AES) and new anti-tamper features. Altera Arria 10 HPS now has three Ethernet MAC cores, 256 KB Scratch-RAM, supports 8- and 16-bit NAND flash devices, eMMC SD/SDIO/MMC cards, and 72-bit DDR3/4 memory. Altera Arria 10 features the industry’s only midrange 28.3 Gbps support, highest performance 2,666 Mbps DDR4 SDRAM memory interface, IEEE 754-compliant hard floating-point with 1,500 GFLOPS of DSP performance and 96 transceiver lanes deliver 3.6 Tbps of serial bandwidth.

ARM mbed IoT Starter Kit on IBM’s Bluemix cloud platform


ARM launches the ARM mbed IoT Starter Kit Ethernet Edition, an extremely easy to use development kit for Internet of Things, to channel data from Internet-connected devices directly into IBM’s Bluemix cloud platform. The combination of a secure sensor environment by ARM with cloud-based analytics, mobile and application resources from IBM allows fast prototyping of new smart products and unique value-added services for the IoT market. It is particularly suitable for developers with no specific experience in embedded or web development, as it provides a platform for learning new concepts and creating working prototypes. After the initial out of box experience, the infinite possibilities of cloud applications can be explored through IBM’s production grade BlueMix platform, in which deployment and device management is as simple for one device as it is for a million of them. The starter kit hardware can be modified and extended to explore the device design space, and a finalised design can be taken to production using the mbed SDK and HDK.

ARM mbed IoT Starter Kit can be ordered here: https://developer.mbed.org/platforms/IBMEthernetKit/

Lowest Power WiFi in the World: Atmel | SMART SAM W25 Wi-Fi for IoT with ARM Cortex-M0+ with up to 10 years of battery life


The Atmel | SMART SAM W25 Wi-Fi module brings the world’s lowest power Wi-Fi module with their ARM Cortex-M0+ microcontroller and the Atmel WINC1500 low-power Wi-Fi 2.4GHz IEEE 802.11 b/g/n SoC (System on Chip) optimized for the IoT market. It provides integrated software solution with application and security protocols such as TLS, integrated network services (TCP/IP stack) which are available through Atmel’s Studio 6 integrated development platform (IDP). The Atmel SMART SAM W25 Wi-Fi module can run Wi-Fi for IoT applications for upwards more than 10 years on AAA batteries when pulling IoT data at a 30 minute interval speed.

Lowest Power Bluetooth in the World: Atmel BTLC1000 Bluetooth for IoT on ARM Cortex-M0 with up to 9 years of battery life

Posted by – March 26, 2015

The Atmel BTLC1000 Bluetooth Smart SoC can run at sub-1µA in standby mode in a 2.1mmX2.1mm Wafer Level Chipscale Package (WLCSP), while delivering the industry’s best dynamic power consumption with a potential battery life of up to 9 years on a coin cell battery. Atmel designed BTLC1000 specifically for the rapidly growing IoT and for wearables market, including portable medical, activity trackers, human Interface devices, gaming controllers, beacons and much more.

Expanding upon the Atmel SmartConnect wireless portfolio, the BTLC1000 is a Bluetooth Smart link controller integrated circuit that connects as a companion to any Atmel AVR or Atmel | SMART MCU through a UART or SPI API requiring minimal resource on the host side. The standalone Atmel | SMART SAMB11 Bluetooth Smart Flash MCU leverages the embedded ARM Cortex-M0 core combined with the integrated analog and communication peripherals to implement application-specific functionalities and is available as a system-in-package or a certified module. Both devices are fully integrated with a self-contained Bluetooth Smart controller and stack enabling wireless connectivity for a variety of applications to be quickly implemented without the wireless expertise typically required.

Free Electrons Thomas Petazzoni and Opersys Karim Yaghmour at Atmel booth at Embedded World 2015

Posted by – March 26, 2015

In this interview, Free Electrons CTO Thomas Petazzoni and Opersys founder Karim Yaghmour exchange some thoughts about embedded Linux vs. Android, and then Thomas moves on to describe in more details the activities of the embedded Linux services company Free Electrons. Both Free Electrons and Opersys are unique amongst others things by the fact that they provide all their training materials freely on the web! Thomas also discusses the numerous Linux kernel contributions made by Free Electrons, which is ranked the 7th contributing company for the next Linux kernel release, in number of patches, an impressive result for a 9 persons business: Free Electrons has developed a core expertise in pushing the support for ARM processors to the upstream Linux kernel. More specifically, the work done by Free Electrons engineers on Atmel ARM platforms is presented, since Free Electrons was demonstrating an Atmel SAMA5D3 platform with a brand new DRM/KMS graphics driver that has been developped by Free Electrons engineer Boris Brezillon and recently merged in Linux 4.0.

$10 Cypress PSoC ARM Cortex-M3 Programmable System-on-Chip


Cypress makes programmable system-on-chip solutions used in a wide range of applications, from consumer and automotive to industrial and military products. They are launching the $10 CY8KIT-059 development board to program their ARM Cortex-M3 PSoC 5LP at http://www.cypress.com/?rid=108038 The Cypress PSoC platform includes several families of devices that feature an ARM Cortex processor surrounded by a host of programmable analog and digital resources that can easily be customized with a simple drag-and-drop design tool called PSoC Creator. Cypress’s newest PSoC innovation includes the PSoC 4 M-Series, which, with its 32-bit ARM Cortex M0- core, 128KB of flash, programmable analog and digital components, dual CAN interfaces and 55 GPIOs, make it an ideal replacement for standard 8-bit and 16-bit applications. Another recent Cypress innovation is the Cypress PSoC 4 BLE, which adds Bluetooth Low Energy connectivity to any device, and is ideal for a variety of wireless applications from fitness and health-monitoring wearables to sensor-based systems in homes.

Atmel | SMART SAM S70 and E70 ARM Cortex-M7 (World’s fastest ARM Cortex-M)


The Atmel | SMART SAM S70 and E70 microcontrollers are based on the high-performance 32-bit ARM Cortex-M7 RISC processors with double precision floating point unit. They operate at a maximum speed of 300MHz and feature up to 2048KB of Flash, dual 16KB of cache memory and up to 384KB of SRAM. They can achieve 1500 CoreMarks or up to 645 DMIPS. On the memory side, they have a flexible SRAM which can be configured as Tightly Coupled Memory (TCM) up to 256KB. Allowing execution of deterministic code or fast processing data. Code executed from TCM is executed at full speed so at 300MHz. The SRAM is multi-port which is reducing the latency over the bus matrix. When they have a lot of burst the latency can be reduced by 16 thanks to the 4 ports. To accelerate the execution of the code from on-chip Flash or nonvolatile memory connected to QuadSPI or over the External Bus Interface, they have integrated a huge L1 cache of 16kByte for the instruction and 16kByte for the data. Both with ECC. The 384KByte of SRAM can be extended through the SDRAM interface. Looking at the features now, they have plenty of serial communications such as SPI, SDIO or USART. Atmel has one High-speed USB Host and Device, with integrated PHY which obviously save some cost and PCB space. There is one CMOS Camera interface for image acquisition. All the series offer two Advanced Analog Frontend (AFE) with Dual Sample and hold capability and Up to 16-bit resolution with hardware oversampling. They also have programmable Gain for small signal input. All series offer real-time event management through direct connection between PWM, Timer and ADC for motor control application. Both series are based on the same feature set, the only difference is coming from the Ethernet, CAN support (SAME70 integrates Ethernet and CAN). Atmel offers all series in BGA and QFP from 64 to 144 pins. Small 64-pin pincount option offers an entry level form factor high performance MCU. All series support the extended Industrial temperature range from -40 to 105°C.

Xilinx Zynq UltraScale+ FPGA MPSoC with quad ARM Cortex-A53 and dual ARM Cortex-R5

Posted by – March 16, 2015

Xilinx announces their next generation 16nm FPGA with quad-core ARM Cortex-A53 and dual-core ARM Cortex-R5, Mali400 GPU. The FPGA market is for designs where flexibility, high performance and fast time to market is important providing programmable hardware. The silicon is going to be available at the end of this year, so they are for now showing emulated version of their SoC. The dual-core ARM Cortex-R5 on the SoC are used for increased safety and security. By going with a 16nm 64bit design, Xilinx can pack a lot more performance without consuming more power than their previous dual-core ARM Cortex-A9 based Zynq 7000 which I filmed here http://138.2.152.197/2011/03/04/xilinx-zynq-7000-series-cortex-a9-in-fpga-at-embedded-world-2011/

App store for the Embedded World, IS2T MicroEJ embedded Java platform on Freescale ARM Cortex-M

Posted by – March 4, 2015

MicroEJ demonstration on ARM Cortex-M4 Freescale K70 device, includes a Z-wave communication through USB host and Bluetooth communication with ARM Cortex-M0+ Freescale KL46Z device, driving a black&white 128×128 display. Both K70 and KL46Z are running MicroEJ Java platform, JVM footprint is 28KB ROM+1.5KB RAM. Boot time to Java main method is 2ms at 120MHz. Java technology brings OOP (oriented object programming) and virtualization (full simulator running on PC) to the embedded microcontroller software development. MicroEJ offers an App store called wadapps (http://wadapps.com), a new way to download application on connected devices. http://www.is2t.com

Freescale Kinetis KV5x ARM Cortex-M7

Posted by – March 4, 2015

This video provides an overview of Freescale’s new ARM Cortex-M7 based MCU – the Kinetis V series KV5x family for motor control and digital power conversion applications. The KV5x is the newest member of the V series and combines leading-edge processing power, sophisticated analog and timing peripherals, and new connectivity, security and safety features. It brings increased motor efficiency, remote system management and end-node interoperability via the Internet of Things (IoT) to a vast range of applications, from home appliances to complex industrial drives. Also featured in the video are the new Kinetis V series Freedom Development Boards and High Voltage Development Platform. You can read more about the Freescale Kinetis V series and supporting development tools here: http://www.freescale.com/kinetis/vseries

Infineon shows €16 ARM Cortex-M0 XMC1100 Starter Kit Development Board with free DAVE “Digital Application Virtual Engineer”


Matthias Ackermann, Industrial Microcontrollers at Infineon Technologies presents the latest technologies around its XMC 32-bit industrial microcontroller families powered by ARM Cortex-M and a new version of DAVE in action – 600W LLC titanium class power conversion reference design using XMC4000 series, XMC MCU buck kit evaluation platform for XMC MCUs, 1kW BLDC power tool reference design using XMC1300 series, 2-axis FOC motor control using XMC4400 series, MATLAB Simulink coder library integration in DAVE, secure field update/upgrade for XMC4000 series, 24GHz radar for presence and distance detection, flicker-free LED lighting control with RGB LED lighting shield for Arduino.

The Infineon demos show typical use cases and implementations utilizing XMC MCUs that feature deterministic behavior (programmable hardware interconnect matrix), performance (with DSP and FPU or MATH co-processor enabling 32-bit DIV and 24-bit trigonometric calculations), accuracy (peripherals clock up to 120MHz, HRPWM with 150ps), full control (timer concatenate up to 64-bit, POSIF), integration (ΔΣ Demodulator, LED Brightness Color Control Unit), and flexible programmable communication interfaces for M2M and IoT.

The demos use DAVE. DAVE stands for “Digital Application Virtual Engineer”. It is the free of charge software development platform for XMC MCUs offering a configurable and reusable code repository called XMC Lib (low level driver) and DAVE APPs.

ARM Cortex-M processors are everywhere at Embedded World

Posted by – February 28, 2015

In this video, Thomas Ensergueix and Diya Soubra, product managers at ARM for Cortex-M processors,
discuss how software complexity is driving the increase in the deployment of 32bit Cortex-M processors in the embedded market.

The ARM Cortex-M processor family is a range of scalable and compatible, energy efficient, easy to use processors designed to help developers meet the needs of tomorrow’s smart and connected embedded applications. Those demands include delivering more features at a lower cost, increasing connectivity, better code reuse and improved energy efficiency. The Cortex-M family is optimized for cost and power sensitive MCU and mixed-signal devices for applications such as Internet of Things, connectivity, smart metering, human interface devices, automotive and industrial control systems, domestic household appliances, consumer products and medical instrumentation.

You can read more about the ARM Cortex-M series of processors at http://www.arm.com/products/processors/cortex-m/

ARM Cortex-M7 in STM32 F7 STMicroelectronics, IS2T brings MicroEJ Java apps store for embedded market


STMicroelectronics launches STM32 F7 series of very high performance Microcontroller Units based on the ARM Cortex-M7 core. The STM32 F7 devices are the world’s first ARM Cortex-M7 based 32-bit microcontrollers, improving on the benchmark performance. Taking advantage of ST’s ART Accelerator as well as an L1 cache, the STM32 F7 devices deliver the maximum theoretical performance of the Cortex-M7 no matter whether code is executed from embedded Flash or external Memory: 1000 CoreMark/428 DMIPS at 200 MHz fCPU.

Demonstrated running on the STM32 F7, IS2T MicroEJ SDK enables embedded Java development for any MCU and MPU, from the smallest ARM Cortex-M0+ to the newest Cortex-M7 and beyond. The embedded Java platform includes IS2T Java Virtual Machine (footprint: 28KB of RAM, 1.5KB of RAM) and IS2T libraries for IoT, GUI and communication applications. Boot time to first line of Java main is 2ms on a Cortex-M4@120MHz.

IoT solutions includes TPC/IP, Wifi, MQTT, Websockets, HTTP, JSON, XML, COAP… protocols. GUI solutions includes a full set of widgets, drawing, motions, anti-aliased… libraries – typical animations at 60FPS with less than 10% CPU load. Full Java applications run on MCU starting from 256KB of flash.

The MicroEJ demo running on STM32F7 device shows the Waddapps store connection, an online store of embedded applications that can be downloaded to the STM32F7 through any link (e.g. ethernet, Wifi, Bluetooth). Apps are downloaded, installed, started, stopped, uninstalled without reset – same as smartphone users would typically do with an Apps Store.

More information about STM32 F7: http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1858?sc=stm32f7
Free MicroEJ SDK evaluation: http://www.is2t.com
Wadapps Store: http://www.wadapps.com

Freescale i.MX 6SoloX ARM Cortex-A9 with ARM Cortex-M4 and the Mentor Embedded Multicore Framework

Posted by – February 27, 2015

Freescale launches i.MX6SX for Heterogeneous Processing at Embedded World 2015, it has one ARM Cortex-A9 core running at 1Ghz and one ARM Cortex-M4 core running at 200Mhz. Enabling the Heterogeneous Processing on the new Freescale i.MX 6SoloX , Mentor Graphics shows their Mentor Embedded Multicore Framework that enables two capabilities necessary for taking advantage of mixed core architectures: 1) remote processor lifecycle management and 2) inter-processor communication. Remote processor lifecycle management is based on the open source standard remoteproc, and allows the master core to power and boot a remote core. The inter-processor communication mechanism is based on the open source standard rpmsg, and allows the establishment of a communication channel across different types of cores and operating systems.

The demo shown at the Freescale booth at Embedded World boots Mentor Embedded Linux on the A9 core. The Linux system runs a Qt based patient monitoring application. When the start button is pressed on the Qt application, remoteproc interfaces are used to power up the M4 core and launch the Nucleus RTOS firmware responsible for capturing patient data, then rpmsg interfaces are used to establish a VirtIO based communication mechanism between the applications across the mixed core and operating system architecture. Pressing the stop button on the Qt application the reverse happens, ending in a powered off M4 core.

The entire runtime software architecture is instrumented and the trace data is visualized in Sourcery Analyzer for simultaneous timeline performance analysis and debug of both operating systems and applications.

You can read more about the Freescale iMX6 SoloX here: http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i.MX6SX

Secure IoT for the future: Thread stack mbed OS on ARM Cortex-M using Atmel 802.15.4 radios

Posted by – February 25, 2015

Seppo Takalo, Senior software engineer, talks about the work happening at the Thread group to enable secure and reliable Internet of Things, formed from companies who work with 802.15.4 based mesh networking components. The goal is to provide a standard for Secure, Robust, self healing, Native IPv6 based mesh networking that runs on top of 6LoWPAN and uses standard 802.15.4 radios. You can find more about Thread at: http://www.threadgroup.org/