Author:


Nvidia DGX Station, world’s most powerful desktop, a Supercomputer at the office

Posted by – November 28, 2017

Nvidia DGX Station is the world’s first and fastest personal supercomputer for leading-edge AI development at Supercomputing developers desk, it has the computing capacity of four server racks in a desk-friendly package, using less than one twentieth the power. It’s the only personal supercomputer with four Nvidia Tesla V100 GPUs, next generation Nvidia NVLink, and new Tensor Core architecture. DGX Station delivers 3X the training performance of today’s fastest workstations, with 480 TFLOPS of water cooled performance (3X Faster Than the Fastest Workstations) and FP16 precision. It’s designed to be whisper quiet at one tenth the noise of other deep learning workstations, it’s designed for easy experimentation at the office.

Filmed in 4K60 at Supercomputing 2017 in Denver using Panasonic GH5 ($1999 at Amazon.com) on firmware 2.1 (aperture priority, AF continuous tracking) with Leica 12mm f1.4 ($1297 at Amazon.com) with Sennheiser MKE440 stereo shotgun microphone ($325 at Amazon.com), get $25 off renting cameras and lenses with my referral link at https://share.lensrentals.com/x/wWbHqV

CLEARink wins Best Technical Development Materials at IDTechEx USA 2017

Posted by – November 23, 2017

Interview at IDTechEx show USA 2017 with Joel Pollack, board member at CLEARink, formerly responsible for Amazon Kindle display design at Lab126, also formerly CEO of Clairvoyante (now part of Samsung) and Dr Bob Fleming, CTO for CLEARink. They just won the IDTechEx award for best technical development materials. CLEARink previously won the award at SID for this reflective display technology, it uses Total Internal Reflection (TIR) to create white pixels and electrophoresis to create black pixels using black particles in a solution. Here is a video that shows how the technology works. Also see my SID video interview of their CEO, at CLEARink is targeting eSchoolbooks and Wearables, their product is low power, sunlight readable like other ePaper technologies but they are making ePaper 2.0 which offers color and video in addition to the usual benefits of ePaper.

Red Hat Enterprise Linux 7.4 available for ARM servers

Posted by – November 20, 2017

Red Hat Enterprise Linux is now fully supported on ARM server-optimized SoC’s designed for cloud and hyperscale, telco and edge computing, as well as high-performance computing, for SoC’s such as the Cavium ThunderX2 and the Qualcomm Centriq2400, and OEM partners, like HPE for the Apollo 70, through the culmination of a multi-year collaboration with silicon and hardware partners and the upstream community. Over the past 7 years, Red Hat has helped to drive open standards and develop communities of customers, partners and a broad ecosystem. Our goal was to develop a single operating platform across multiple 64-bit ARMv8-A server-class SoCs from various suppliers while using the same sources to build user functionality and consistent feature set that enables customers to deploy across a range of server implementations while maintaining application compatibility.

Filmed in 4K60 at Supercomputing 2017 in Denver using Panasonic GH5 ($1999 at Amazon.com) on firmware 2.1 (aperture priority, AF continuous tracking) with Leica 12mm f1.4 ($1297 at Amazon.com) with Sennheiser MKE440 stereo shotgun microphone ($325 at Amazon.com), get $25 off renting cameras and lenses with my referral link at https://share.lensrentals.com/x/wWbHqV

Fujitsu Post-K ARM Supercomputer, Exascale by 2021

Posted by – November 20, 2017

Fujitsu is developing a very powerful ARM processor for its Post-K exascale supercomputer, to have a much wider impact on the HPC market than just a single system. Riken, Japan’s largest and most prestigious scientific research institute, will be the recipient of the Post-K system. This HPC optimized ARM processor design is being done in collaboration with ARM integrating SVE (Scalable Vector Extension), extending the vector processing capabilities associated with AArch64 (64bit) execution in the ARM architecture, enabling implementation choices for vector lengths that scale from 128 to 2048 bits, enabling High Performance Scientific Compute featuring advanced vectorizing compilers to extract more fine-grain parallelism from existing code to reduce software deployment effort. SVE also supports a vector-length agnostic (VLA) programming model that can adapt to the available vector length. When the Post-K Supercomputer is ready, which may be around 2020-2022, and if it lives up to its near-exascale performance promise, it will be eight times faster than today’s most powerful supercomputer in the world, China’s Sunway TaihuLight. The Post-K system will be used to model climate change, predict disasters, develop drugs and fuels, and run other scientific simulations. The Fujitsu Post-K ARM processors are likely to be 10nm FinFET chips fabricated by TSMC, and will feature high-bandwidth memory and the Tofu 6D interconnect mesh that was developed for the original K Supercomputer.

Filmed in 4K60 at Supercomputing 2017 in Denver using Panasonic GH5 ($1999 at Amazon.com) on firmware 2.1 (aperture priority, AF continuous tracking) with Leica 12mm f1.4 ($1297 at Amazon.com) with Sennheiser MKE440 stereo shotgun microphone ($325 at Amazon.com), get $25 off renting cameras and lenses with my referral link at https://share.lensrentals.com/x/wWbHqV

Cray ARM Supercomputer with Cavium ThunderX2 in GW4 Isambard with Simon McIntosh-Smith

Posted by – November 19, 2017

Cray announces the world’s first production-ready ARM Powered supercomputer based on the Cavium ThunderX2 64bit ARMv8-A processor, added to the Cray XC50 supercomputer enabling the world’s most flexible supercomputers, available in both liquid-cooled cabinets and air-cooled cabinets, to be available in the second quarter of 2018. Featuring a full software environment, including the Cray Linux Environment, the Cray Programming Environment, and ARM-optimized compilers, with ARM’s upcoming SVE technology as the most efficient path to achieving the vision of exascale, ARM libraries, and tools for running today’s supercomputing workloads, with the Cray Aries interconnect. Cray’s enhanced compilers and programming environment achieves more performance out of the Cavium ThunderX2 processors, up to 20 percent faster performance compared with other public domain ARMv8 compilers such as LLVM and GNU.

Cray is currently working with multiple supercomputing centers on the development of the ARM-based supercomputing systems, including various labs in the United States Department of Energy and the GW4 alliance, a coalition of four leading, research-intensive universities in the UK. Through an alliance with Cray and the Met Office in the UK, GW4 is designing and building “Isambard,” an Arm-based Cray XC50 supercomputer. The GW4 Isambard project aims to deliver the world’s first Arm-based, production-quality HPC service. My video includes an interview with Professor Simon McIntosh-Smith from the University of Bristol who says that Ease of use, robustness, and performance, are all critical for a production service, and their early experiences with Cray’s ThunderX2 systems and end-to-end ARM software environment are very promising. All of the real scientific codes they’ve tried so far have worked out of the box, and they’re also seeing performance competitive with the best in class. Having access to Cray’s optimized HPC software stack of compilers and libraries in addition to all of the open-source tools has been a real advantage.

Filmed in 4K60 at Supercomputing 2017 in Denver using Panasonic GH5 ($1999 at Amazon.com) on firmware 2.1 (aperture priority, AF continuous tracking) with Leica 12mm f1.4 ($1297 at Amazon.com) with Sennheiser MKE440 stereo shotgun microphone ($325 at Amazon.com), get $25 off renting cameras and lenses with my referral link at https://share.lensrentals.com/x/wWbHqV

Cavium ThunderX2 production systems now available

Posted by – November 18, 2017

Cavium announces ThunderX2 ARM Server systems now available for customers in server and high performance Supercomputing, partners include Bull/Atos, Cray, Gigabyte, Penguin, Ingrasys/Foxconn and HPE. After 7 years of work by partners in the ARM Server ecosystem (and 7 years of my ARM Server video-blogging), now is finally the time high performance ARM Server systems are launched for cloud computing, high performance computing markets worldwide. The Cavium ThunderX2 server SoC integrates fully out-of-order, high-performance custom cores supporting single and dual-socket configurations. ThunderX2 is optimized to drive high computational performance delivering outstanding memory bandwidth and memory capacity. The new line of ThunderX2 processors includes multiple SKUs for both scale up and scale out applications and is fully compliant with Armv8-A architecture specifications as well as the Arm Server Base System Architecture and Arm Server Base Boot Requirements standards.

ThunderX2 SoC family is supported by a comprehensive software ecosystem ranging from platform level systems management and firmware to commercial Operating Systems, Development Environments and Applications. Cavium has actively engaged in server industry standards groups such as UEFI and delivered numerous reference platforms to a broad array of community and corporate partners. Cavium has also demonstrated its leadership role in the Open Source software community driving upstream kernel enablement and toolchain optimization, actively contributing to Linaro’s Enterprise and Networking Groups, investing in key Linux Foundation projects such as DPDK, OpenHPC, OPNFV and Xen and sponsoring the FreeBSD Foundation’s Armv8 server implementation.

Filmed in 4K60 at Supercomputing 2017 in Denver using Panasonic GH5 ($1999 at Amazon.com) on firmware 2.1 (aperture priority, AF continuous tracking) with Leica 12mm f1.4 ($1297 at Amazon.com) with Sennheiser MKE440 stereo shotgun microphone ($325 at Amazon.com), get $25 off renting cameras and lenses with my referral link at https://share.lensrentals.com/x/wWbHqV

HPE unveils The Machine, Apollo 70, Cavium ThunderX2 ARM HPC Supercomputing platforms

Posted by – November 17, 2017

HP Enterprise unveils their HPC optimized Cavium ThunderX2 ARM Powered High Performance Computing platforms, the Apollo 70 is a disruptive ARM HPC processor technology with maximum memory bandwidth, familiar management and performance tools, and the density and scalability required for large HPC cluster deployments. And then HPE Labs unveils The Machine which is also powered by a Cavium ThuderX2, it is HPE’s vision for the future of computing as by 2020, one hundred billion connected devices will generate far more demand for computing than today’s infrastructure can accommodate.

The Machine is a custom-built device made for the era of big data. HPE says it has created the world’s largest single-memory computer. The R&D program is the largest in the history of HPE, the former enterprise division of HP that split apart from the consumer-focused division. If the project works, it could be transformative for society. But it is no small effort, as it could require a whole new kind of software. HPE’s prototype can accomodate up to 160 terabytes of memory, capable of simultaneously working with the data held in every book in the Library of Congress five times over — or approximately 160 million books. According to HPE, it has never been possible to hold and manipulate whole data sets of this size in a single-memory system, and this is just a glimpse of the immense potential of Memory-Driven Computing. Following the GenZ Consortium’s vision, based on the current prototype, HPE expects the architecture can scale to an exabyte-scale single-memory system and, beyond that, to a nearly limitless pool of memory — 4,096 yottabytes. For context, that is 250,000 times the entire digital universe today. With that amount of memory, HPE said it will be possible to simultaneously work with every digital health record of every person on earth, every piece of data from Facebook, every trip of Google’s autonomous vehicles, and every data set from space exploration all at the same time — getting to answers and uncovering new opportunities at unprecedented speeds.

Filmed in 4K60 at Supercomputing 2017 in Denver using Panasonic GH5 ($1999 at Amazon.com) on firmware 2.1 (aperture priority, AF continuous tracking) with Leica 12mm f1.4 ($1297 at Amazon.com) with Sennheiser MKE440 stereo shotgun microphone ($325 at Amazon.com), get $25 off renting cameras and lenses with my referral link at https://share.lensrentals.com/x/wWbHqV

Wu Feng talks Supercomputing Green500 List

Posted by – November 16, 2017

Wu Feng, co-founder of the Green500, talks about the challenges to reach exascale through energy efficient super computing, with massive parallel processing at the Denver Supercomputing 2017 conference. Wu Feng is a Professor and Turner Fellow of Computer Science with additional appointments in Electrical & Computer Engineering, Health Sciences, and Biomedical Engineering and Mechanics at Virginia Tech (VT). At VT, he directs the Synergy Laboratory, which conducts research at the synergistic intersection of systems software, middleware, and application software; of particular note is his high-performance computing (HPC) research in the areas of green supercomputing, accelerator-based parallel computing, and bioinformatics. Prior to joining VT, he spent seven years at Los Alamos National Laboratory, where he began his journey in green supercomputing in 2001 with Green Destiny, a 240-node supercomputer in 5 square feet and consuming only 3.2 kW of power when booted diskless. This work ultimately created the impetus for the Green500.

Filmed in 4K60 at Supercomputing 2017 in Denver using Panasonic GH5 ($1999 at Amazon.com) on firmware 2.1 (aperture priority, AF continuous tracking) with Leica 12mm f1.4 ($1297 at Amazon.com) with Sennheiser MKE440 stereo shotgun microphone ($325 at Amazon.com), get $25 off renting cameras and lenses with my referral link at https://share.lensrentals.com/x/wWbHqV

Highlights from SID Display Week 2017 (watch 70 full videos in playlist, link in description)

Posted by – November 11, 2017

70 videos were filmed at SID Display Week 2017. Interviews, Booth tours, Keynotes, watch all the videos in this playlist

watch all videos in the YouTube playlist: https://www.youtube.com/playlist?list=PL7xXqJFxvYviknIF-WV_YjdJR1czAVnKR

Best of I-Zone Award for the LCD Headlights at the SID Display Week 2017

Posted by – November 11, 2017

The I-Zone at SID Display Week 2017 was sponsored by E Ink, returned for its sixth year, and showcased cutting-edge demos and prototypes that will lead to the products of tomorrow. I filmed 29 of these startups which you can see in the playlist over all the SID Display Week 2017 videos that I have published here This year’s winner of the “Best Prototype” is IGM, University of Stuttgart who I filmed here, who partnered with Hella KGaA Hueck & Co. to develop a novel headlamp with fully adaptive, driving beam technology that incorporates both active-matrix LCD and LED technologies. For the first time, there are also two honorable mentions at I-Zone, those went to:

– Jasper Display Corporation and glō for its megapixel silicon backplane (4k x2k) and spatial light modulator technology for microdisplays
– Turtle Beach and Nepes Display for its HyperSound Glass, the world’s first highly directional and transparent parametric speaker

NovaCentrix at SID Display Week 2017

Posted by – November 11, 2017

NovaCentrix talks about how their customers are using their tools for the emerging flexible display and flexible IoT and sensors industry.

Qeexo FingerSense and TouchTools uses Machine Learning for Touch screens

Posted by – November 11, 2017

Qeexo shows their FingerSense which elevates the user experience of touch-enabled devices by understanding how a user is touching the screen, making them more intelligent, more powerful, and easier to use. Powered by Qeexo’s lightweight, high-speed machine learning technology, FingerSense is the world’s only software solution to provide touch-enabled devices the intelligence to know what is touching the screen. FingerSense allows devices to distinguish between a fingerpad, knuckle, nail, or passive stylus tip and eraser, revolutionizing the way we interact with touch surfaces. Filmed at the SID Display Week.

NTL Technologies narrow viewing angle privacy Smartphone display

Posted by – November 11, 2017

NTL shows their narrow viewing angle display which controls the light beam not using the narrow film but controlling the viewing angle by an electrical switch within the smartphone. So when you want to do something privately you can switch on the narrow viewing angle mode on your smartphone. NTL is a spin-off from NEC now part of Chinese Tianma which I have also filmed here. Filmed at the izone at SID Display Week.

HoIst Center for Innovation: A shared R&D space for cutting edge technology

Posted by – November 11, 2017

HoIst Center for Innovation is working on a model of shared knowledge and R&D for various industrial partners, where they work on cutting edge technology like flexible OLED displays, In-mold electronics like capacitive touch sensors, OLED lighting, NFC and switch and gates. They are also showing the stretchable printed electronics PCB which can be use in the textile and sports industry. Filmed at the IDTechEx Show!

ilika Solid State battery for Industry 4.0

Posted by – November 11, 2017

ilika Technology is a UK based company who is mainly working in Material science and innovation in various electronics products.They have collaboration with Rolls Royce and Toyota for research and development.here they are showcasing their Solid state sub milliamp hour battery for the constant temperature measurement and broadcasting via Bluetooth beacon. Filmed at the IDTechEx Show!

AGFA Nano-silver for printed electronics

Posted by – November 10, 2017

AGFA Group provides the technology solution to Health care and Printing industry. Here they are showcasing the Nano silver conductive Ink for printed electronics. They use this silver metal mesh for making the transparent conductive plastic surface. On the other side of the booth is the inkjet printable Solder mask for high accuracy and low pollution PCB manufacturing and digitally printed nano silver Ink on paper with the same conductivity as plastic. Filmed at the IDTechEx Show!

Icohup Rium Radioactivity sensor, Ikalogic Wireless Oscilloscope

Posted by – November 10, 2017

Icohup is showcasing Rium which is a consumer device for measuring the pollution level and the radio activity at the home, it’s a radioactivity sensor, a powerful gamma spectrometer, it can also detect the nature of the different type of radioactive rays. The device can be connected to the mobile app via Bluetooth and keep them updated about the environment, that informs users about the level of risk and proposes protection means adapted to each situation, as the Rium instrument is geolocated and connected to the Internet, the data received allow us to build radioactivity maps in real time. Icohup also develops tailored sensors in different fields such as fluids leaks, gas, anti-counterfeiting, etc.

Next to them is Ikalogic who is making the wireless oscilloscope probe which can be connected to desktop or mobile phone via WiFi and sends the data to it wirelessly. They also made the software to view the in detailed pattern of the signal. Ready to make uncompromised measurements, right out of your pocket. Anywhere. Anytime.

CPI with Flexible printed battery and Gas sensor

Posted by – November 10, 2017

CPI Is the Center for process innovation company based in UK who collaborates with universities and SMEs to help them bring the new and innovative products to the market. They support their partner starting from the Concept to the market including but not limited to business support for the technology, manufacturing, supply chain management etc. Here they are showcasing the Inject printed copper PCB. One of the product is harvesting the energy from the NFC filed to glow the LEDs in the flexible PCB. There is also a giant OLED screen, Ethane sensor, breath sensor, and TB sensor. They are also showcasing the temperature and humidity logging circuit which has printed battery, microprocessor and two sensors inbuilt. Filmed at the IDTechEx Show!

David Abdurachmanov of CERN talks High Energy Physics on ARMv8 64bit Servers at Linaro Connect

Posted by – November 10, 2017

Around the year 2000, the convergence on Linux and commodity x86_64 processors provided a homogeneous scientific computing platform which enabled the construction of the Worldwide LHC Computing Grid (WLCG) for LHC data processing. This allowed the High Energy Physics (HEP) community to use a homogeneous software model utilizing the x86_64 architecture. LHC experiments at CERN, in particular ATLAS and CMS, started investigating ARMv8 64-bit (AArch64) architecture for HEP needs. A journey which started in 2013. The LHC community faces a great challenge regarding computing needs in 10 years and has started exploring public clouds, volunteer computing (e.g., LHC@home) and HPC facilities to increase peak computation capacity. This talk will contain information about future (a timeline of 10 years) computation needs for LHC experiments and the more recent progress done by ATLAS, CernVM and CMS teams on using ARMv8 64-bit/AArch64.

You can watch the keynote by David Abdurachmanov and Jakob Blomer here:

CLEARink Video and Color enabled ePaper technology at DisplayWeek 2017

Posted by – November 10, 2017

Filmed at SID’s Displayweek 2017, we got to see CLEARink’s monochrome, color and video displays. This was the first public demo of this technology which originated at the University of British Columbia in Vancouver, Canada. Company is aiming for applications which require all the benefits of ePaper along with mass producible color and full motion video. They have commenced trial manufacturing at a LCD fab and hope to derive benefits of a fully depreciated factory. I interviewed their vp of marketing, Sri who has been in the display industry for decades. I also posted my interview with CLEARink’s CEO here.