Category: Servers

Page 3 of 14 1 2 3 4 5 6 14

Arm HPC Ecosystem update, Arm Supercomputing at SC17

Posted by Charbax – February 1, 2018

Chris Goodyer
Overview of Arm
• HPC engagements
Arm partner information
• Latest deployment information
Arm Software Ecosystem
• Software stack enabling
• Arm's priorities on libraries and applications,

Filmed at the Arm HPC User Group at SC17 in Denver.

slideshow

Shadow Blade cloud PC Xeon/GTX1080 for cloud gaming, cloud 4K60/8K video-editing

Posted by Charbax – January 25, 2018

French startup Blade presents their awesome Shadow cloud PC service at €30/month that streams a very powerful $2000 (equivalent) desktop PC hosted on their server powered by a high-end 8-threaded Intel Xeon server CPU with an Nvidia GTX1080 GPU, 12GB RAM, 256GB SSD (with harddrive/SSD storage expansion options available) running a full Windows 10 Pro desktop remotely in their server, using low-lag Internet technologies that they have developed, fast codecs (to have at least 15mbit/s Internet bandwidth available is recommended for a good experience), fast tricks that they have developed to make this all possible, to offer cloud gaming or high-end video-editing, 3D graphics rendering, audio processing, or anything else that might be useful to run on advanced PC hardware that you can think of, and you can then run that through client applications either running on their AMD APU based Shadow PC thin client that they offer to their subscribers (for a smooth up to 4K60 or 1080p144hz gaming experience), or you can run clients on a Chromebook, any Android phone, Android TV, Macbooks, any Windows machine, Linux, iPhone, iPad, their service runs on everything. Currently their service works well in France, initially it was just for French users who had Fiber to the home connections, but now it also runs smoothly onto any ADSL, Cable even LTE devices in France, the service is also supported in Belgium and a few other countries nearby France. Because for a good service, the user has to be within as few hops in the global backbone internet network as possible, to experience as little lag times as possible. Advanced professional gamers have tested this system and they have reported that they cannot feel any difference between the Shadow cloud gaming service and a local desktop gaming machine. The lag time are said to depend more on the speed of the PC monitor than of the internet back to their cloud server system. They are about to expand their offering to cover the whole of California as they are setting up a cloud server system right now in the Silicon Valley also. They plan to expand their services globally in the near future according to demand.

Atos Bull Sequana X1310 on Cavium ThunderX2 Dibona Supercomputer

Posted by Charbax – December 4, 2017

The Mont-Blanc European Exascale supercomputing project based on ARM power-efficient technology, using Cavium ThunderX2 ARM server processor to power its new High Performance Computing (HPC) prototype with HPC SW infrastructure for ARM with tools, code stacks and libraries and more. The ambition of the Mont-Blanc project is to define the architecture of an Exascale-class compute node based on the ARM architecture, and capable of being manufactured at industrial scale. The Mont-Blanc 3 system being built by a consortium which includes Atos, ARM, AVL (Austrian power train developer) and seven academic institutions, including the Barcelona Supercomputer Center (BSC), implements this ARM for HPC with high memory bandwidth and high core count on Cavium's custom ARMv8 core architecture with out-of-order execution that can run at 3 GHz. The ThunderX2 might be delivering twice the integer and floating point performance compared with ThunderX1 with also twice the memory bandwidth.

Filmed in 4K60 at Supercomputing 2017 in Denver using Panasonic GH5 ($1999 at Amazon.com) on firmware 2.1 (aperture priority, AF continuous tracking) with Leica 12mm f1.4 ($1297 at Amazon.com) with Sennheiser MKE440 stereo shotgun microphone ($325 at Amazon.com), get $25 off renting cameras and lenses with my referral link at https://share.lensrentals.com/x/wWbHqV

Keynote: Aaron Welch of Packet.net at Linaro Connect San Francisco 2017

Posted by Charbax – November 30, 2017

Keynote: Imagine The Internet in Ten Years – Aaron Welch (Packet)

Think back to the summer of 2007. AWS was a few months old, the first iPhone had just been released, and Uber was still two years away from its founding.

Now look the other way: ten years into the future. A future standing on the shoulders of today’s nearly 20 million software developers (which may double in the next five years), a mature ecosystem of venture funded firms around the world, and dozens of major companies dumping massive resources into everything from new data centers, cloud services, VR, 5G, robotics, autonomy, space travel, and a huge variety of software of all stripes and flavors.

Aaron Welch, co-founder and SVP of Product at Packet (the leading bare metal cloud for developers), outlines Packet’s vision for the infrastructure of tomorrow, and why hardware is the next innovation layer.

Aaron Welch, SVP of Product, Packet Hosting Inc

Posted by Charbax – November 30, 2017

Interview with Aaron Welch, SVP of Product at http://Packet.net about what he said in his keynote, about the ARM Servers which they are providing as bare metal hosting at http://Packet.net and what he thinks the internet will be like in the next ten years, probably powered by ARM Servers which they will provide.

@vielmetti talks ARM Servers at Packet.net and @worksonarm

Posted by Charbax – November 30, 2017

Interview with Ed Vielmetti, Special Projects Director at http://Packet.net talking about their available and upcoming ARMv8 servers in the data center and the ARM Server ecosystem that is being advanced at a rapid pace. Ed Vielmetti is posting News and software updates at https://twitter.com/vielmetti and https://twitter.com/worksonarm

Dell EMC Supercomputing, Machine and Deep Learning for Enterprise

Posted by Charbax – November 28, 2017

Dell EMC shows some of their latest machine and deep learning products for the Enterprise market, enabling enterprises to address opportunities in areas such as fraud detection, image processing, financial investment analysis, personalized medicine and more. The new Dell EMC PowerEdge C4140 Machine Learning and Deep Learning Ready Bundle accelerator-based platform for demanding cognitive workloads, powered by latest generation NVIDIA V100 GPU accelerators with PCIe and NVLink high-speed interconnect technology, two Intel Xeon Scalable Processors, to bring high performance computing (HPC) and data analytics capabilities to mainstream enterprises worldwide.

Dell EMC's Supercomputers power some of the fastest supercomputers in the world such as the one built for The Texas Advanced Computing Center (TACC) at The University of Texas at Austin, the “Stampede2” supercomputer with Intel Xeon Phi 7250 processors across 4,200 nodes connected with Intel Omni-Path Fabric, developed in collaboration with Dell EMC, Intel and Seagate and ranks No. 12 on the TOP500 list of the most powerful computer systems worldwide. Simon Fraser University’s “Cedar” supercomputer was built for big data, including artificial intelligence, with 146 Dell EMC PowerEdge C4130 servers with NVIDIA Tesla P100 GPUs. Canada’s most powerful academic supercomputer ranks No. 94 on the TOP500 and No. 13 on the Green500, helping researchers chart new territory across several areas such as to study the continually changing DNA code in bacteria.

Filmed in 4K60 at Supercomputing 2017 in Denver using Panasonic GH5 ($1999 at Amazon.com) on firmware 2.1 (aperture priority, AF continuous tracking) with Leica 12mm f1.4 ($1297 at Amazon.com) with Sennheiser MKE440 stereo shotgun microphone ($325 at Amazon.com), get $25 off renting cameras and lenses with my referral link at https://share.lensrentals.com/x/wWbHqV

Red Hat Enterprise Linux 7.4 available for ARM servers

Posted by Charbax – November 20, 2017

Red Hat Enterprise Linux is now fully supported on ARM server-optimized SoC's designed for cloud and hyperscale, telco and edge computing, as well as high-performance computing, for SoC's such as the Cavium ThunderX2 and the Qualcomm Centriq2400, and OEM partners, like HPE for the Apollo 70, through the culmination of a multi-year collaboration with silicon and hardware partners and the upstream community. Over the past 7 years, Red Hat has helped to drive open standards and develop communities of customers, partners and a broad ecosystem. Our goal was to develop a single operating platform across multiple 64-bit ARMv8-A server-class SoCs from various suppliers while using the same sources to build user functionality and consistent feature set that enables customers to deploy across a range of server implementations while maintaining application compatibility.

Filmed in 4K60 at Supercomputing 2017 in Denver using Panasonic GH5 ($1999 at Amazon.com) on firmware 2.1 (aperture priority, AF continuous tracking) with Leica 12mm f1.4 ($1297 at Amazon.com) with Sennheiser MKE440 stereo shotgun microphone ($325 at Amazon.com), get $25 off renting cameras and lenses with my referral link at https://share.lensrentals.com/x/wWbHqV

Fujitsu Post-K ARM Supercomputer, Exascale by 2021

Posted by Charbax – November 20, 2017

Fujitsu is developing a very powerful ARM processor for its Post-K exascale supercomputer, to have a much wider impact on the HPC market than just a single system. Riken, Japan’s largest and most prestigious scientific research institute, will be the recipient of the Post-K system. This HPC optimized ARM processor design is being done in collaboration with ARM integrating SVE (Scalable Vector Extension), extending the vector processing capabilities associated with AArch64 (64bit) execution in the ARM architecture, enabling implementation choices for vector lengths that scale from 128 to 2048 bits, enabling High Performance Scientific Compute featuring advanced vectorizing compilers to extract more fine-grain parallelism from existing code to reduce software deployment effort. SVE also supports a vector-length agnostic (VLA) programming model that can adapt to the available vector length. When the Post-K Supercomputer is ready, which may be around 2020-2022, and if it lives up to its near-exascale performance promise, it will be eight times faster than today's most powerful supercomputer in the world, China's Sunway TaihuLight. The Post-K system will be used to model climate change, predict disasters, develop drugs and fuels, and run other scientific simulations. The Fujitsu Post-K ARM processors are likely to be 10nm FinFET chips fabricated by TSMC, and will feature high-bandwidth memory and the Tofu 6D interconnect mesh that was developed for the original K Supercomputer.

Filmed in 4K60 at Supercomputing 2017 in Denver using Panasonic GH5 ($1999 at Amazon.com) on firmware 2.1 (aperture priority, AF continuous tracking) with Leica 12mm f1.4 ($1297 at Amazon.com) with Sennheiser MKE440 stereo shotgun microphone ($325 at Amazon.com), get $25 off renting cameras and lenses with my referral link at https://share.lensrentals.com/x/wWbHqV

Cray ARM Supercomputer with Cavium ThunderX2 in GW4 Isambard with Simon McIntosh-Smith

Posted by Charbax – November 19, 2017

Cray announces the world’s first production-ready ARM Powered supercomputer based on the Cavium ThunderX2 64bit ARMv8-A processor, added to the Cray XC50 supercomputer enabling the world’s most flexible supercomputers, available in both liquid-cooled cabinets and air-cooled cabinets, to be available in the second quarter of 2018. Featuring a full software environment, including the Cray Linux Environment, the Cray Programming Environment, and ARM-optimized compilers, with ARM's upcoming SVE technology as the most efficient path to achieving the vision of exascale, ARM libraries, and tools for running today’s supercomputing workloads, with the Cray Aries interconnect. Cray's enhanced compilers and programming environment achieves more performance out of the Cavium ThunderX2 processors, up to 20 percent faster performance compared with other public domain ARMv8 compilers such as LLVM and GNU.

Cray is currently working with multiple supercomputing centers on the development of the ARM-based supercomputing systems, including various labs in the United States Department of Energy and the GW4 alliance, a coalition of four leading, research-intensive universities in the UK. Through an alliance with Cray and the Met Office in the UK, GW4 is designing and building “Isambard,” an Arm-based Cray XC50 supercomputer. The GW4 Isambard project aims to deliver the world’s first Arm-based, production-quality HPC service. My video includes an interview with Professor Simon McIntosh-Smith from the University of Bristol who says that Ease of use, robustness, and performance, are all critical for a production service, and their early experiences with Cray’s ThunderX2 systems and end-to-end ARM software environment are very promising. All of the real scientific codes they’ve tried so far have worked out of the box, and they’re also seeing performance competitive with the best in class. Having access to Cray’s optimized HPC software stack of compilers and libraries in addition to all of the open-source tools has been a real advantage.

Filmed in 4K60 at Supercomputing 2017 in Denver using Panasonic GH5 ($1999 at Amazon.com) on firmware 2.1 (aperture priority, AF continuous tracking) with Leica 12mm f1.4 ($1297 at Amazon.com) with Sennheiser MKE440 stereo shotgun microphone ($325 at Amazon.com), get $25 off renting cameras and lenses with my referral link at https://share.lensrentals.com/x/wWbHqV